モノイダル圏の定義 フルバージョン
code:MonoidalCategory.sig
2-signature
<MonCAT: c; m, i; α, λ, ρ>
fixed-in <: CAT; ×, I>
Data
0-morph underlying @ c : CAT
1-morph product @ m : c × c -> c
1-morph unit @ i : I -> c
2-iso associator @ α
: (m × c^) * m => (c^ × m) * m
: c × c × c -> c
2-iso l-unitor @ λ
: (i × c^) * m => c^
: c -> c
2-iso r-unitor @ ρ
: (c^ × i) * m => c^
: c -> c
Axioms
3-eq triangle-identity
: (ρ × c^) * m =3= (c^ × i × c^) * α ; (c^ × λ) * m
: (c^ × i × c^) * (m × c^) * m => m
: c × c -> c
3-eq pentagon-identity
: (m × c^ × c^) * α ; (c^ × c^ × m) * α =3= (α × c^) * m ; (c^ × m × c^) * α ; (c^ × α) * m
: (m × c^ × c^) * (m × c^) * m => (c^ × c^ × m) * (c^ × m) * m
: c × c × c × c -> c
$ \left\lang\mathrm{ MonCAT }\colon c; m, i; α, λ, ρ \right\rang
fixed in $ \mathbf{CAT}_× = \left\lang \mathbf{CAT} ; (×), I ; \dot α, \dot λ, \dot ρ \right\rang
where
$ \forall a,b,c\colon \mathbf{CAT}
$ (a,b,c).\dot α \colon (a×b)× c → a×(b×c)
$ a.\dot λ \colon I × a → a
$ a.\dot ρ \colon a × I → a
0-morph
底圏$ c \colon \mathbf{CAT}
1-morph
$ m =(\otimes)\colon c×c\to c
$ i \colon I → c
2-iso
$ α \colon (m × c^\wedge) * m
$ ⇒ (c,c,c).\dot α * (c^\wedge × m) * m
$ \colon (c×c)×c → c
$ λ\colon (i × c^\wedge) * m ⇒ c.\dot λ
$ \colon I × c → c
$ ρ\colon (c^\wedge × i) * m ⇒ c.\dot ρ
$ \colon c × I → c
https://gyazo.com/a58c9ce17fcae794444b3b6e0096c463 https://gyazo.com/9dc8edf5c73db74fb2401bbb8dc6447c https://gyazo.com/03bb0009ccbe560a09b2caa6698cfe2d
公理系
https://gyazo.com/2d529f59c37b1e6321188faef7b319c8
https://gyazo.com/1bd18013dd521cfd063fd26553eab70f
$ (ρ × c^\wedge) * m
$ = ((c^\wedge × i) × c^\wedge) * α
$ ; (c,I,c).\dot α * (c^\wedge × λ) * m
$ \colon ((c^\wedge × i) × c^\wedge) * (m × c^\wedge) * m
$ ⇒ (c,c).\mathrm{Tri} * m
$ : (c × I) × c → c
where
$ (c,i,c).\dot α
$ = ((c^\wedge × i) × c^\wedge) * (c,c,c).\dot α
$ = (c,I,c).\dot α * (c^\wedge × (i × c^\wedge ))
$ (c,c).\mathrm{Tri} \coloneqq c.\dot ρ × c^\wedge
$ = (c,I,c).\dot \alpha * (c^\wedge \times c.\dot \lambda)
$ \colon (c × I) \times c \to c\times c
WIP.icon
https://gyazo.com/f5a15e8b75c90559a4e104ec8d0261ae
https://gyazo.com/a49264baf0c46db09035557de8734c0fhttps://gyazo.com/8875ffdcc0514daf0e4aca6b940f13ea
$ (m × c^\wedge × c^\wedge) * α
$ ; (c^\wedge × c^\wedge × m) * α
$ = (α × c^\wedge) * m
$ ; (c^\wedge × m × c^\wedge) * α
$ ; (c^\wedge × α) * m
$ \colon (m × c^\wedge × c^\wedge) * (m × c^\wedge) * m
$ ⇒ (c^\wedge × c^\wedge × m) * (c^\wedge × m) * m
$ \colon c × c × c × c → c
i.e.$ \alpha_{x ⊗ y, z,w} ; \alpha_{x, y, z ⊗ w} $ = \alpha_{x,y,z} ⊗ w^\wedge ; \alpha_{x,y ⊗ z,w} ; x^\wedge ⊗ \alpha_{y,z,w}
$ ((x ⊗ y)⊗ z)⊗ w $ \to x \otimes( y\otimes (z\otimes w))